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PREFACE 

This r epor t  is t h e  t h i r d  technical  report  t o  be issued under Contract NAsw-905 

and is devoted s p e c i f i c a l l y  t o  documentation of some addi t ional  t h e o r e t i c a l  results 

on p r o b a b i l i s t i c  modeling obtained i n  t h e  basic research e f f o r t  under t h e  contract .  

The basic  research s tudies  cons i s t  mainly of invest igat ions in curve, level and 

zero crossings by c e r t a i n  normal s tochas t i c  processes (both s t a t iona ry  and non- 

s ta t ionary)  . 
and the  r e l i a b i l i t y  of c e r t a i n  complex systems. 

Such invest igat ions provide measures  of the q u a l i t y  of performance 

The t e x t  of t h i s  report  i s  devoted primarily t o  the rigorous mathematical 

development of an expression f o r  the variance of the  number of zeros of a s t a t ion -  

ary random process. The major t heo re t i ca l  results of t h e  study are s t a t e d  i n  the  

f i r s t  s ec t ion  as a theorem. From the practical viewpoint of computing the desired 

variance quant i ty ,  equation 1.8 i s  also presented i n  the f i r s t  section. The 

remaining sect ions a r e  devoted exclusively to the mathematical r i go r  f o r  proof of 

the  theorem. 
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The Variance of the Number of Zeros of Stationary Normal Processes 

1. Introduction 

Let [x(t), t E [O,T]) be a real separable stationary normal stochastic process 

with &[x(t)] = 0, Var[x(t)] = 1, with covariance function r(T) = e[x(O)x(~)] and 

corresponding (integrated) spectrum F(X), that is, 

We consider 

interval [O,T] . 
applications has 

CD 

r(7) = J COSXT dF(X) . 
0 

a random variable Nx defined 

The importance of Nx and its 

been discussed previously in 

as the number of zeros of x(t) on the 

statistical properties in reliability 

the reports of Cramer (1962) and 
I 

Leadbetter (1963). The mean value of N is known even for a large class of non 

stationary normal process (Leadbetter and Cryer (1964)), the result for the 

(stationary) case at hand being 

X 

(1.2) &[Nx] = T X:I2/,r 

where X is the second spectral moment, i.e., 2 

L 
0 

Recently, Ylvisaker (1963) has shown that (1.2) is valid under certain Qeak 

conditions even if = +a. We note here that X2 < +OO is equivalent to r(7) 
2 

having a (finite) second derivative at the origin. 

Higher moments of Nx have received much less attention in the literature. The 

formula for e[N ] is implicit (under certain conditions) in the work of Rice (1944) 

and is given for a particular normal process by Steinberg, et a1 (1955). The first 

derivation for a somewhat general situation seems to occur in a footnote of a paper 

2 
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by Rozanov and Volkonskii (1961) where it is assumed that the sixth spectral moment 

is finite (or, equivalently, that r(T) has a sixth derivative at the origin).. 
2 The purpose of this report is to derive the formula for e[N ] under quite 
X 

weak conditions, given in the following result. 

Theorem: Suppose that the covariance function r('I) has a second derivative 

r"(7) which, for all sufficiently small 'I satisfies 

(1.4) x2 + r"(7) 5 Y(Z)  , 
where Y ( T ) / ' I  is integrable over [O,T] and Y(T) decreases monotonely as 'I decreases 

to zero. 

Suppose further that the spectral distribution F(X) has a continuous 

component. Then we have 

where p (u,v,x,y) is the four-variate normal density for the variables 

x(t), x(s), x'(t), x'(s), and where x'(t), x'(s) denote the (quadratic mean) deri- 

vatives of x(t) at t and s ,  respectively. 

t-s 

The statement of the theorem as it stands is convenient for theoretical purposes. 

From a practical (computational) standpoint however, the right side of (1.5) may be 

made somewhat more explicit. Specifically we may write 

where C = C(T) is given as 

c =  ) 7 = t-s. 
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Equation (1.5) may then be evaluated (see, for example Rice (1944) or Steinberg, 

et a1 (1955)) to yield 

2 'L 
(1.8) &ENx] 2 = T h2 'l2/n + (2/n2) (T-T) - C~,)1/2(1-r2(~))-3/2[l+atan-1*]d~, 

0 

2 -1/2 where Cis is the (i,j) cofactor of C and A = C 34 (C2 33 - C S 4 )  

C and A on T = t-s being suppressed. 

, the dependence of 

ij 
The proof of the theorem follows from a series of lemmas given in the next 

three sections. 

2. The process (yn(t)l. 

There is no loss of generality in taking T = 1 and we do so. We use the method 

of Bulinskaya (1961) in approximating the x(t)-process by a sequence of processes 

defined as follows: 

For each positive integer n and each t E [0,1], let k = kn(t) be the unique 

integer such that k/2n 2 t < (k+1)/2n, (so that 0 <, k 5 2"). Then define 

(2.1) yn(t) = x(k/2") + 2"(t-k/2")[x((k+1)/2") - ~(k/2~)], 
that is, (yn(t): 

form k/2n, and consisting of straight line segments between such points. 

0 <, t 2 1) is a new process coinciding with x(t) at points of the 

Let N denote the number of zeros of the yn(t)- process for 0s t 2 1. By 
Yn 

definition of y (t), clearly N n 
Ylvisaker (private communication) has shown that the set of sample functions 

2 Nx. 
Yn 

of x(t) which are tangent to the axis somewhere has probability zero. 

easily seen that N 

N2 -> Nxy a. s . ,  and by monotone convergence we have 

Hence it is 

-> Nxy with probability one, as n -> 0 0 .  Hence also 
Yn 

2 

"n 
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2 
Lemma 2.1: &[N2 ] -> &[NX] , as n -> CD . 

Yn 

] we use a sequence of functions "approaching a Dirac delta 2 To evaluate C[N 
Yn 

function, " viz. , 

Definition: A sequence {6,(x)] of non negative integrable functions will be 

called a 6-function sequence if 

+W 
(i 1 / 6,(x) dx = 1 for all m = 1,2,... , 

-a, 

(2.2) and 
E 

(ii) / S,(x) dx -> 1 as m -> 00 for any E > 0. 
-E 

We now evaluate N~ analytically. 

Lemma 2.2: 

Yn 
If {6,(x)] is any 6-function sequence, then, with probability one, 

we have 

and 

Proof: The proof follows directly from Lemma 2 of Leadbetter and Cryer (1964) 

which states that 

(2.5) and 

The inequality (2.4) allows us to apply the dominated convergence theorem to 

(2.3) yielding 

4 



Lema 2.3: 

(where the interchange of order of integration is permitted by Fubini's theorem for 

positive functions). 

3. Further preliminary leumas. 

To evaluate the right side of (2.6) we consider the t,s integration over four 

For each positive disjoint regions. 

integer n and each E > 0 we define for 0 <, t, s 5 1 the sets 

Let Ik denote the interval [k/2", (k+1)/2"). 

s1 = {(t,s): It-sl < E? 

S2 = {(t,s): 

S3 =.{(t,s): 

It-sl 2 E, t and s both in Ik for some k? 

It-sl 2 E, for some k, t e I and s E IHl 01 s E I k k and t E IH1) 

S4 = {(t,s) 

The right side of (2.6) can now be written as 

otherwise, i.e., t and s in separated intervals] 

and we consider the integrations over the four regions separately. 

Lema 3.1: -- 

and hence 

Proof: Put g, = k/2". Let tl, t 

1 

. . . ,tN be the zeros of yn(t) on [O,l] . 
Then, with probability one, eo = 7 minlt -k/2"1, where the minimum is taken over i 

2' 

n i=l, ..., N and k=O,l, ..., 2 , is a positive number. 
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Thus the  l e f t  s ide  of ( 3 . 2 )  i s  l e s s  than o r  equal t o  

The f i rs t  term i s  N as i n  the  proof of lemma 2 . 2  and the  second term i s  zero 
Yn 

s ince ,  by de f in i t i on  

yn(CYk-eo) and yn(olk) a r e  of the same sign. 

than o r  equal t o  N , a . s .  

yn(a +E ) and yn(ak) a r e  of the  same s ign  and s imi l a r ly  k o  

Hence the  l e f t  s i d e  of ( 3 . 2 )  i s  l e s s  

Yn 
Further, i f  E < E then the  l e f t  s i d e  of ( 3 . 2 )  i s  not l e s s  than 

0 

ti+€ t . + E  
1 

= N , as i n  the  proof of lemma 2 . 2 .  
Yn 

Thus the  equal i ty  i n  ( 3 . 2 )  is proved. 

Equation ( 3 . 3 )  follows from ( 3 . 2 )  and ( 2 . 4 )  by applying the  dominated con- 

vergence theorem. 

The next r e s u l t  w i l l  be needed l a t e r .  

6 



h m  3.2: As IT-->O the following limits hold uniformly for 0 < t,s <, 1. 

Proof: From (2.1), the definition of yn(t), we have 

cov [Y,(t) , Y n W  I 

(3.5) = [ (1-2Ilt+k) (1-2"s+&)+( 2"t -k) (2"s-&) ] r( (k-4) /2n) 

+( 1-2nt+k) ( 2ns -4,) I( (k-4-1) /2n) + ( l-2ns+4,) ( 2nt -k) r( (k-&+l) /2n) 
where k=kn(t) and &kn(s)- 

Expanding the r( .) terms on the right side of (3.5) into two term Taylor 

expansions, about the point t-s, we obtain 

= [ 1-2"t+k) ( 1-2ns+&)+( 2n~-&) (2nt-k) ] r ' (en) [; k-.e - (t-s)] 
2 

-k+.i+l 
0 < It-s-gnl < 1 -y- - t+s1 < 3.2-" , 

2 
(3.6) 

7 



By the definition of k and & the quantities )l-Znt+kl, ll-Z"s+&I, 12"t-k/, and 

IZ"s-&l are all bounded by 1, hence 

Since r'(7) is uniformly continuous and bounded for 0 5 z 5 1 the required uniform 

limit (i) is obtained. 

Again by the definition of yn(t) we have 

cov[Yp, Yn(S)I 

= Zn{ (1-Zns+4,) [r((k-4,+l)/Zn) - r((k-&)/Zn)] 
+ (2"s-&) [r((k-&)/Zn) - r((k-&-1>/Zn)]) 

Using three term expansions we find 

cov[yA(t>, yn(s)l - r'(t-s> 

= -&+k+l - t+s> 2 - rtt(~,>(y- k-& - t+s) 2 I 
2 2 

where the (new) On, Yn satisfy ( 3 . 6 ) .  Hence again 

and since rl'(?) is also uniformly continuous and bounded for 0 5 r 5 1 the desired 

result (ii) holds. 

Lastly we have 

cov[yA(t), yA(s)l = 22n[2r((k-4,)/2n) - r((k-&-l)/Zn) - 1-((k-&+1)/2~)] 
1 = -?[ r ' I (  t -s+hn-O,) + r I t (  t -s+hn+@ n) ] 

where h = -  k-4, - t+s, 0 < Bn < 2'n, and 0 < on < 2'n. 
2" 
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Both h -8 and h +8 tend uniformly t o  zero as n---->a, and, by the uniform continuity n n  n n  
' of r"(?), (iii) is proved. 

With the help of this lemma we may obtain 

2"-1 2"- 1 

k=O 2" 2 k=O 

k 5 t,s c 7 1 '  H l  u wk , (say). 
= c) E(t,s): i t - s l  2 E, - s2 Proof: 

For (t,s) E: Wk, yn(t), yn(s), yA(t), yA(s) are linearly related so that we have only 

two non degenerate random variables, and thus 

where p (x,y) is the bivariate-normal density for (yn(t), y,(s)). Taking 
n,t,s 

and putting mx = u, my = v in (3.7) yields m -(lux) 2/2 Gm(X) = 

w 2 2  2 
(u/m,v/m) dudv '(U +v )/2 E 

2mn I I e  (t-s) Pn,t,s 
-a, 

2 Pn,t,s (X,Y) = (2n) -1 D-1/2 exp[-(Cx2 - 2Bxy + Ay )/2DJ 

By lema 3.2 these moments tend uniformly to the corresponding moments of the x(t) 
, 
I process. In particular 

2 Dn(t,s) -> 1-r (t-s). 

NOW 
W W 2 1-r (T) = (l-cosXT)dF(X) I (l+cosX?)dF(X) >, 0 .  

0 0 

Equality holds only if 1 = +cosh.r except for a X-set of dF(X) measure zero. But for 

?#O only countably many X can satisfy 1 = +_cosX.r and hence, since F(X) has a 
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continuous component, the strict inequality holds. Further r(7) being continuous 
2 implies that 1-r (t-s) is bounded away from zero when It-sl 2 E > 0. Hence, 

for sufficiently large n, the integrand of ( 3 . 8 )  is dominated by 

2 2  
const E-2(u-v>2 e -(u +v )/2 Y 

which is integrable in u and v and bounded (constant) in t and s .  Hence the integral 

of (3.7) over S2 is dominated by a constant multiplied by l/m which yields the proof 

of the lema. 

Proof: We can write 

2n-2 
= u C(s,t): s3 k= o 

2"-2 

2n-2 

t-s( 2 €,  - I t < -  k+l < s < q u  
2" 2 2n 

k+2 t-sl 2 E ,  - I s < -  lCt1 I t < - )  
2n 2n 2n 

2n-2 

For (t,s) E W k k 
the set yn(t), y,(s), yA(t), yA(s). 

(or W') there are only three non degenerate random variables among 

Further by stationarity 

and similarly for W' and W'. Hence the lemma will be proved if we show 
k j 

10 



-l-ttl 
&fine x0 = ~(2-~), x1 = x(O), and x2 = x(2 

t' = 2 - t, s'  = s - 2 . Then for 0 < t < 2 - ~ < s <  2 

) and for convenience let 

we have -n -n 

yn(t) = 2nt'xl + (1 - Znt')xo , yn(s) = 2ns9x2 + (1 - 2ns9xo . 
-1/2 2 2  

Taking again S,(x) = m(2n) exp(-m x /2) the integrations in (3.9) may be 

written 

2 2-n 0 00 2 

O 2-n 
- I  I dtds !I/ 22nm2(2~)-1exp[- 3 [2"txl + (1-2nt)xo]2+[2n~x2 + (1-2"s)x0] 11 

-ai) 

(3.10) I (xl-xo) (x2-x0) ~ ~ n ~ ~ O ~ ~ ~ ~ ~ ~ ~ d x O d x ~ d x ~  S 

-n+l where pn(xo,x1,x2) is the tri-variate normal density for ~(2-~), x(O), x(2 

and we omit the primes on t and s in the remainder of this proof. 

), 

We can write the triple integral in (3.10) as the sum of six such integrals 

over the following ragions: 

R1: x1 5 x <, x2 
0 

R2: xo 5 x 1 5  x 2 

R3: x2 <, x1 5 xo 

R4: x2 5 xo<, x1 

R5: xo 2 x2 5 x1 

R6: x1 <, x2 5 xo 

From symmetry arguments for x1 and x 2 we need consider only regions R1, R2 and 

Since in region R we have 1 

2 2 n 2 
x2 1 + xo 5 [2ntxl+(l-2"t)xo] t [2"s x2+(1-2 s)xol 

the contribution to (3.10) from region R1 is not greater than 

11 



(3.11) 

2n 2 +a, 2 2 2  2 m  
27t JSS e -m (x1+xo)/2 I (xo-xl) (xo-x2) Ipn(Xoyxl ,x2)dxodxldxq 

-00 

In more detail we have 

where 

Calculation shown that 

1 

By the proof of lemma 3.3 the first factor is strictly positive. Putting 2-n = a 

the second factor may be written 
a, 00 

1-2[ 1 COSM! dF(X)]' + J cos 2M1 df(X) 
0 0 

2 a, 2 00 
= 2{J COS XQ! dF(X) - [J C O S X ~  dF(X)] I 

0 0 

This can be zero only if cosm = r(a) a.e. 

has a continuous component. 

(3.11) is dominated by 

(F(X)) which is impossible since F(X) 

Therefore IVnl > 0 all n. Hence the integrand of 

2 2 2  -(u +v +x2)/2 
const e I (u-v) (V-X,) 

(using lemma A.l) which is integrable in u,v x and const in t and s .  2 

12 



Hence the contribution to (3.10) over regions R and R 1 4 is dominated by 
I -1 

const m which tends to zero as m ->a,. 

I For region R we note that It-s 1 > E: is equivalent to t' + s '  2 E and further 2 

For (s,t) E W and xo, xl, x2 in region R we have 2 

[E: 2nx +(1+E2n)x012 + x; 2 [2"tx1+(1-2"t)x01 2 + [2nsx2+(1-2ns)xo] 2 
1 

An analogous inequality holds for (s,t) E W'. Now 

1 2  2 2  22n +a, 

2 !/! exp{ --[u 2 +(E~~V+(~+E~~)U) +x2]1 I (u-v) (u/m-x2) Idudvdx2 
-a, 

I This integrand, which tends to xero as ->a,, is dominated by the integrable 

(in u,v,x ,t,s) function 2 

-1 and hence again the contribution to (3.10) over R (and R ) goes to zero like m . , 2 5 

R3 xl+x2 2 2  [2"t~~+(1-2~t)~,] 2 + ]2"Sx2+(1-2 n s)x0] 2 , In region 

I 
l and 

13 



As in the previous cases, by dominated convergence, this tends to (as r > m )  

From the explicit form of p (xo,x1,x2) this can be written n 

2 2 -n+l 00 

( 2 1 1 ) ~ ~ ~ ~ l V ~ l - ~ ~ ~  J x exp[-(l-r (2 ))x2/(2 IV,l) ]ax 
-00 

where K is a constant not depending on n. 
-4") We find that as n-ho IVnl = o(2 , since r"(2) exists and is continuous 

at T = O .  

Further 

Hence 

-2n 312 = 2n 0(y4")/ [-2-2n+2r"(Q)+o(2 11 

- > O  as n- > a .  

Therefore the contribution to (3.9) over regions R and R is zero proving the 3 6 

desired result. 

Before considering the t,s region S we need to 2nsure that the joint distri- 
4 

bution of y,(t), yn(s), yA(t), yi(s) is non singular for (t,s> E S4. 

is provided by the next lemma. 

This result 

14 



Lema 3.5: For ( t , s , )  E S4 the  covariance matrix h ( t , s )  of 

y ( t )  , y (s) , yA(t), yA(s) i s  non-singular for  every n. n n 

Proof: From the  d e f i n i t i o n  of t he  y ( t )  process i t  i s  easy t o  see t h a t  f o r  n 

( t , s )  E s 4  c ( t , s )  i s  non-singular i f  the  covariance matrix of x(O), x(2-"), 

x(j2-"),x((j+1)2-") i s  non-singular f o r  j > 1. 

n 

Writing r f o r  r(m2-n) t h i s  m 

covariance matrix i s  

(3.13) 

j+ 1 r r 

r 1: 

r1 j 

1 

r r 1 

1 

j-1 j rl 

r1 j j-1 

Some ca l cu la t ion  shows t h a t  the determinant of (3.13) can be w r i t t e n  as  

-n 
Consider the  f i r s t  f ac to r .  W e  can wr i te  (put t ing 2 =a) 

The inequal i ty  (3.15) i s  Schwa=' inequal i ty .  Equal i ty  holds only i f  

(3.16) sins ( j - l )x  /2  = const s i n a  (j+1.)~/2 

15 



except on a X-set of F(X) measure zero. For Q! and j > 1 fixed ( 3 . 1 6 )  can be 

satisfied for only countably many X values. Hence, since F(X) contains a continuous 

component, the inequality at ( 3 . 1 5 )  is strict and so the first factor of ( 3 . 1 4 )  is 

strictly positive. An analogous argument shows that the second factor is strictly 

positive and hence the lemma. 

Now we can show 

L e m  3 . 6 :  

where p (u,v,x,y) is the four-variate normal density for yn(t), yn(s), yA(t), 
n,t,s 

* 
4' yA(s), and S4 = lim S 

E->O 

Proof: We first appeal to lemma 2.3 and equation ( 3 - 1 ) .  The term &[N ] in ( 3 . 1 7 )  

is given by lemma 3 . 1 ,  while the ~ ( l )  term follows from lemmas 3 . 3  and 3 . 4 .  Hence 
Yn 

( 3 . 1 7 )  will hold if we can show 

m 

Explicitly we have 

-1 
'n, t s (u ,v , x , y = ( 2n) I zn I 2exp [ - (u ,v , x , y zn (u ,v , x , y > /2 1 

where 2 n = Cn(t,S) = cov(yn(t) , Y,(s> ,yA(t),y~(s)>. 

-112 exp(-m 2 2  x /2), we may write the expectation in Taking again Sm(x) = m(2n) 

( 3 . 1 8 )  as 

1E.f (2n) - 3m2 lzn1-1/2 Ixylexp[-(m 2 2  u +m 2 2  v +(u,v,x,y)~~1(u,~,x,y)')/2]dudvdxdy 
-00 

16 



By lemma 3.5 we have that lZn(tys)l is bounded away from zero uniformly 

Further an application of lemma A.l show that for (t,s) E S4. 

-1 
exp [-(U,V,X,Y) cn (U,V,X,Y)'/21 

I 

-1 <, exp [-(x,y)A (X,Y)'/2] 

where A is the 2 x 2 covariance matrix of y'(t), yi(s). 

3.5 A is non-singular for (t,s) E S 

the elements of A are bounded functions of t and s ,  the diagonal elements being 

bounded away from zero for (t,s) E S 

As a corollary to lemma 

and indeed by the calculations of lermna 3.2 
n 

I 4 
-1 

~ 

4' 
Hence, by dominated convergence, the limit as m -> w of (3.19) may be 

taken under the integrations to yield 

OD 

the last expression being justified by monotone convergence since S increases 

to Sl as E -> 0. 

4 * 

4 .  The remaining limit 

To evaluate the limit of (3.20) as n -> 00 we again appeal to the dominated 

00 

convergence theorem. That II Ixylpn, ,,(O,O,x,y)dxdy can be dominated by a function 
-OD 

of t and s which is integrable ov'er 0 <_ t, s ,  5 1 is provided by the following 

lemmas. 

17 



Lemma 4.1: 

(4.1) 

(1) p) 
where Cn(t,s) = [ :,2,1 C ( 3 ) ]  , i.e., Z(l) is the upper left 2 x 2 corner of  

Cn(t,s) (defined at (3.18)), and o is the (i,j) cofactor of Cn(t,s). ij 

then 

By Schwarz' inequality this is less than or equal to 

2 1 1/2 a, 

(2n)-' lCnl-1'2[(2n)-1'2 1B3 11i2 // x exp(-?(x,y)B3(x,y)')dxdy] 
-00 

(4.3) 

-1 -1 
3 .  where (B3 )ij represents the (i,j) element of B 

NOW IB I = !C(l)~/~Zll~ (see Anderson (1958) p .  42 for example) and so 3 

-112 - - IZ") Iq. IBJI Further 

a 
- 

B3 - 

and therefore 

18 



-1 ("I-' IJ and ( B 3  ) = -1 
Hence ( B 3  )11 = IC 33 

( 4 . 3 )  yields the desired result. 

In order to dominate the right side of 

and s for 0 2 t, s 5 1 we need to consider 

a 3 1  = 1,(1) 1-1 [ ' 3 3  - 1 3 4 1  

IJ44 43 44 -IJ 

p) 1-1 IJ Putting these values into 44' 

(4.1) by an integrable function of t 

he behavior of the quantities IJ 33' IJ44 

and lX(l)l for T = t-s near zero. 

two lemmas. 

The required results are provided in the next 

* 
Lemma 4.2: Let Xn = X (t,s) be the indicator function for the set Sq, i.e., n 

Then 

as T = t-s -> 0 and the o-term is uniform in n. 

Proof: We note that for (t,s) E S we have It-sl >, 2'n. This is the only property 

of S4  which is used here. 

* 
4 * 

For convenience of proof in this and the following lemma we let 

n 
p = 2"t - kn(t), X = 2 s - kn(S) , 

2 
and for integer m, r = r(1n/2~). With this notation we have C (1.1 = AD - F where 

m 

A = 1-2p(1-p)(1-r1), D = 1-2X(l-X)(l-rl) , 
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and F = [(l-p)(l-X) + pX]r. + (1-p)Xr j -1 + (l-A)prj+l, where j = kn(t) - k,(s). 
3 

(X2-@) where (0 = X + r"(e,), 0 < 6 < 2-n , and -211-1 
2 - 1 -  Now r = 1-2 1 

-2n-1 m2 + Ym 2-1 (m = j-1, j, j+l) , where Y = [A2 + r"(em)]2 -2n-lm2 
m r = 1-X2 2 

with 0 <_ e,< 2-nm. 

Thus 

m 

-2n-1 (A2-@) 11 { 1-2X( 1-1) [ 2 

= 1- [p(l-p) + X(~-A)] ~ ~ ~ ( ~ ~ - 0 1  + p~(l-p)(l-~) 2-4n(~2-4) 

(X2-@) 13 -2n-1 AD = (1-2p(l-p) [2 
I 
I 

2 

By definition 0 < p, X <_ 1 for all t,s and n. Further @ = X2 + r"(B1) <_ Y(el) 
I 

where Y is given by the theorem. 

zero. Thus, for T 2 2 , 

By assumption Y(T) decreases as T decreases to 

-n 

2 
[ p ( ~ - p >  + X(I.-X)] 2-2n @ <_ const T2 ~ ( 8 ~ )  <_ const 7 Y(T> 

2 4 and 2-4n(X2-@) 5 const T . Hence for T 2 2-n we have 

3 
AD = 1 - cp(1-p) + x(1-x)l 2-2n x2 + o(T , as 7 -> 0 ,  

3 where O(T ) is uniform in n. 

Now 

+ [(l-p)(l-X) + pX]Y./2 F = 1 - [j2+2j(~-~)+p+~-2p~~~22 -2n-1 
3 

+ (1-p)X Y j -1 /2 + (1-X)p Yj+1/2 

2 2 
For T 2 2-n we have 2-n(j+l) 5 2-r and thus (l-l)~Y~+~ 5 const T Y(6 ) 5 const T Y(2.r) 

j+l 

and similarly for the other Y terms. Hence, subject to T 2 2-n, m 
2 - 2n 

I F = 1 - [j2+2j(p-~)+p+~-2p~1 x2 2 + o(T2) 
2 where O(T ) is uniform in n. 

Theref ore 

Xn(t,S) l~~l)(t,s) 1-l <_ [(j+p-x)2 X22-2n + 0(T2)]-l 

, asT->O, 2 -1 = [X2T2 + O ( T  ) ]  
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2 where O(T ) is uniform in n as required. 

I Lemma 4.3: 

where the o-term is uniform in n and K is a constant. 

Proof: In the notation or (4.5) we can write 

(4.7) 
= C(AD-F2) + E(2FG-AE) - DG 2 

O33 Y 

i and we consider the three terms separately. 

From the proof of lemma (4.2) we have 

X;(AD-F~) 5 (j+p-Xl2x2 2-2n + K 7%(2.r> + 0(T3)  

3 2n+l where O(T ) is uniform in n. Further C = 2 (1-rl) = X - @  and hence since 2 

X*.@ 5 Y(7) 

X .C(AD-F2) <, (j+p-X) 2 2  X2 2-2n + K ~G(2.c) + o ( T ~ )  
n ( 4 . 8 )  

~ For the second term we find 

! so that 

Also 

and hence 

+ 0(7~)1 [l-(j 2 +2j(p-X)+p+X-2pX)X2 2 -2n-1 
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The second term is therefore 

(4.9) Xn-E(2FG-AE) = X2 2 2 -2n (X-1/2)(2j+Zp-X-1/2) + 2-2n'[(2X2+@)-X2(2j+2~-l)] 

+ (X-I/Z)(X~-+) [ ( Z ~ - U Y .  + (WY j -1 - 'l~j+l~ + 0(T3) , 
J 

3 where O(T ) is uniform in n. 

For the last term we have 

D = 1-2X(1-X)(1-rl) = l-x(l-x) 2-2n(x2-0) . 

For G we expand rjml and r j+l around j, i.e., 

yields -n 11 Now writing r! = j2 r (E,), 0 2 5, 5 jZmn 
J 

and therefore 

(4.10) -Xn*Dc 2 5 -2  -2n X2(j+p-1/2)' 2 .  - 2-2nX2(j*-1/2) [-2j@3+(1-p)@1-pQ2] + O ( T  3 ), 

asT->O , 
3 3 -4n. 2 where O ( T  ) is again uniform in n. The O ( T  ) comes from terms like 2 

and Z-4nj6 which are all dominated by const. -r4 if T 2 2'n. 

J , Z-4nj2@37 

1 
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I 

If we combine (4.81, (4.91, and (4.10) as required in (4.7) we find that the 

' tenns not multiplied by ai or Yi, i.e. , the first term in each case, all cancel. 
From (4.9) the terms that remain are like 

which subject to T 2 2'n, are all dominated in absolute value by const. ~%'(27). 

Similarly the corresponding terms in (4.10) are like 2 J @ which is also 

dominated by const. T%(~T). 

-2n .2 
3 

Hence in combining these results we have that 

I u ~ K T  2 Y(2-r) + O(T 3 ) , as T -> 0 , 
33 (4.11) 

where O(T ) is uniform in n, and K is a constant. From the definition of u and u 

we see that they differ only in that t and s are interchanged. 

given in (4.11) will also hold for u 

3 
44 33 

Thus the bound 

I which yields the proof of the lenrma. 44 

Proof of the theorem: By lemmas 4.2 and 4.3 we have 

I X (t,s)(u,, o ~ ) ~ / ~ / ) Z ( ~ ) ~ ~ / ~  < - [K T~ Y(2.r) + o(-r3)]/[X -r2 + O(T 2 )] 3/2 n 

I 
I Hence 

I (4.12) 

where 5 and K are (absolute) constants. In terms of X equation (3.17) may be 

written 

2 n 

I as n -> a. 

By lemma 4.1 and inequality (4.12) the integrand of the t,s integration is dominated 

by K1 y(2T)/T + K2 which, by the assumptions of the theorem on Y, is integrable for 
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0 5 T 5 1. 

obtain (using lemma 2.1). 

Hence we may take the limit of both sides of (4.13) as n -> a, to 

(4.14) 

the interchange of the limit and the x y y  integration being justified by the explicit 

form given in (1.8) and by lemma (3.2). This is the desired result. 

t 
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. 
Appendix 

Lemma A.1: If 5 =(xl, ..., xn), y = (Y&l,...,y are real row vectors and A is m 

an mxm synnnetric positive definite matrix then 

where A3 is obtained by partitioning as A = corresponding to the 

dimensions of and y. 

Proof: Let A-1 also be partitioned as 

Hence 

d -1 - [(x¶y)A (x,y)'] = 2Plx' + 2P2y' = 0 
dx 

implies 
-1 
1 2  x' = -P P y' (A.2) - 

*%' [(xsy)A-'(z,y)'] = 2P1 which, by virtue of A being positive Note that - d2 

definite, has positive eigenvalues and therefore ensures that (A.2) yields a minimum. 

The minimum value is 

'P'lP )y' y(p3  - p2 1 2 (A.3) 

which gives the final result since P3 - P;Pi1P2 = A3 -1 ; see Anderson (1958) p. 42, 

for example. 
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